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The transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively) channels are members of the TRP
superfamily of structurally related, non-selective cation channels. It is rapidly becoming clear that the functions of TRPV1
and TRPA1 interlink with each other to a considerable extent. This is especially clear in relation to pain and neurogenic
inflammation where TRPV1 is coexpressed on the vast majority of TRPA1-expressing sensory nerves and both integrate
a variety of noxious stimuli. The more recent discovery that both TRPV1 and TRPA1 are expressed on a multitude of
non-neuronal sites has led to a plethora of research into possible functions of these receptors. Non-neuronal cells on which
TRPV1 and TRPA1 are expressed vary from vascular smooth muscle to keratinocytes and endothelium. This review will discuss
the expression, functionality and roles of these non-neuronal TRP channels away from sensory nerves to demonstrate the
diverse nature of TRPV1 and TRPA1 in addition to a direct role in pain and neurogenic inflammation.

Abbreviations
PBMC, peripheral blood mononuclear cell; TRPA1, transient receptor potential cation channel subfamily A member 1;
TRPV1, transient receptor potential cation channel subfamily V member 1

Introduction
The transient receptor potential vanilloid 1 and ankyrin 1
(TRPV1 and TRPA1, respectively) channels are members of
the TRP superfamily of structurally related, non-selective
cation channels that is divided into seven families: TRPC
(Canonical), TRPN (no mechanoreceptor potential C), TRPM
(Melastatin), TRPML (Mucolipin), TRPP (Polycystin), TRPA
(Ankyrin) and TRPV (Vanilloid), each present in several
species across the animal kingdom (Pedersen et al., 2005;
Clapham, 2007). TRP channels have many different physi-
ological roles, ranging from purported roles as store-operated
calcium channels (e.g. TRPC3, TRPC7; Riccio et al., 2002;
Kaznacheyeva et al., 2007), to roles in thermo- (e.g. A1, M8,
V1, V4; Caterina et al., 1997; Güler et al., 2002; Peier et al.,
2002; Story et al., 2003), mechano- (e.g. A1, C1, V1, V4;
Liedtke et al., 2003; Walker et al., 2003; Corey et al., 2004;
Maroto et al., 2005) and chemo-sensation (e.g. A1, M8, V1;
Peier et al., 2002; Bandell et al., 2004; Andersson et al., 2008).
All TRP channels are tetramers formed by subunits with six

transmembrane domains and cation-selective pores, which
frequently show high calcium permeability (Latorre et al.,
2009).

Whilst all seven families have wide roles in many
physiological and pathophysiological processes, TRPV1
and TRPA1 will be the specific focus of this review. Both
TRPV1 and TRPA1 play an integral role in pain (Bevan and
Andersson, 2009; Fernandes et al., 2011) and neurogenic
inflammation (Geppetti et al., 2008) via sensory nerve acti-
vation. In fact, 97% of TRPA1-expressing sensory neurons
express TRPV1, while 30% of TRPV1-expressing neurons
express TRPA1 (Story et al., 2003). Both TRPV1 and TRPA1
channels are calcium-permeable, and, although their sub-
units have not been shown to form a heterotetramer
channel, they may form a complex on the plasma mem-
brane of sensory neurons. This enables TRPV1 to influence
intrinsic characteristics of the TRPA1 channel, including
voltage–current relationships and its open probability at
negative holding potentials (Staruschenko et al., 2010).
Similarly, Salas et al. (2009) have shown that the features of
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neuronal TRPA1 are not duplicated in cells expressing only
TRPA1 and, instead, can be restored only when TRPA1 and
TRPV1 channels are coexpressed. Moreover, both TRPV1
and TRPA1 are integrators of a range of noxious stimuli,
and TRPV1 and TRPA1 agonists are able, at least in part, to
heterologously desensitize TRPV1 and TRPA1 pathways
(Ruparel et al., 2008). Overall, based on evidence such
as that described above, it may well be that TRPV1 and
TRPA1 are ‘partners in crime’ in the activation of sensory
nerves.

The role of these TRP channels in pain and neurogenic
inflammation have, to date, been very well covered by pre-
vious authors (e.g. Bevan and Andersson, 2009; Cortright and
Szallasi, 2009; Stucky et al., 2009; Fernandes et al., 2011),
which reflects the enormity of the role that these channels
play in sensory nerve function at both a central and periph-
eral level. However, there is accumulating evidence that
TRPV1 and TRPA1 have functional roles away from sensory
nerve activity, which this review aims to address. In order to
substantiate a role for these non-sensory nerve TRP channels
in either normal physiology or disease, several criteria must
be fulfilled: (1) TRPV1/TRPA1 expression should be demon-
strated in these tissues at the gene and protein level; (2) the
receptors should be functional, that is, showing evidence of
calcium permeability; and (3) a role in either physiological or
pathophysiological functions should be demonstrated. In dis-
cussing these other functions, the imperative importance of
TRPV1 and TRPA1 in pain and neurogenic inflammation
cannot and should not be diminished. Furthermore, it is
entirely possible that the TRPV1 and TRPA1 activity away

from sensory nerves may indirectly affect pain and neuro-
genic inflammation.

TRPV1

The vanilloid TRP channels are divided into six members – 1 to
6. However, only TRPV1 from the TRPV subfamily is actually
activated by vanilloids, including capsaicin, the pungent com-
ponent of chilli peppers. The capacity of capsaicin to activate
sensory nerves was determined by Jancsó in the 1960s (Jancsó
et al., 1967). However, it was 15 years later that the presence of
a capsaicin receptor in the plasma membrane of sensory nerves
was recognized by Szolcsányi and Jancsó-Gábor (1975). In
1997 came perhaps the most significant advance in TRPV1
research, when the mouse TRPV1 receptor was cloned by
Caterina et al. (1997) [later cloned in humans (Hayes et al.,
2000) and guinea-pigs (Savidge et al., 2002)]. With this major
advance in the understanding of TRPV1 at a molecular level
came the confirmation that heat >43°C and pH <5.9 also
activate TRPV1 (Tominaga et al., 1998). Furthermore, the gen-
eration of TRPV1 knockout mice and a comprehensive analy-
sis of the phenotype of the animals confirmed a pivotal role for
this receptor in noxious heat sensation in vivo (Caterina et al.,
2000). A variety of exogenous and endogenous activators of
TRPV1 have since been identified (see Table 1).

In this context, it is important to mention that the TRPV1
receptor undergoes desensitisation after repeated administra-
tion of, or prolonged exposure to, capsaicin (Szolcsányi et al.,
1975) or resinaferatoxin (Szolcsányi et al., 1990). The receptor

Table 1
Agonists and modulators

TRPV1 TRPA1

Exogenous agonists Capsaicin (Caterina et al., 1997) Allyl Isothiocyanate (Bandell et al., 2004)

Vanilloids (e.g. Olvanil, Resiniferatoxin) (Brand
et al., 1987; Szallasi and Blumberg, 1989)

Environmental pollutants, e.g. acrolein (Bautista
et al., 2006)

Capsinoids (e.g. Capsiate) (Ohnuki et al., 2001) Irritants (e.g. Formalin) (Mcnamara et al., 2007)

Noxious high temperature (>43°C) (Caterina
et al., 1997)

Cold temperatures (<17°C) (Kwan et al., 2006;
Karashima et al., 2009)

Low pH (<6.0) (Caterina et al., 1997) Allicin (Macpherson et al., 2005)

Camphor (Xu et al., 2005) Icilin (Story et al., 2003)

Cinnamaldehyde (Macpherson et al., 2006)

Tetrahydrocannabinol (Jordt et al., 2004)

Endogenous agonists Anandamide (Zygmunt et al., 1999; Smart
et al., 2000)

Oxidative stress products (Bessac et al., 2008) e.g.
4-hydroxynonenal (Trevisani et al., 2007).

Lipoxygenase products (e.g. LTB4) (Hwang
et al., 2000; Huang et al., 2002)

Lipid peroxidation products (Taylor-Clark et al.,
2008)

N-acyldopamines (Huang et al., 2002; Chu
et al., 2003)

Zinc, copper and cadmium (Hu et al., 2009; Gu
and Lin, 2010)

Endogenous modulators (via
activation of intracellular
pathways)

Bradykinin (Chuang et al., 2001) Bradykinin (Bandell et al., 2004; S. Wang et al.,
2008)PAR-2 agonists (Amadesi et al., 2004)

PAR-2 agonists (Dai et al., 2007)NGF (Chuang et al., 2001)

ATP (Chuang et al., 2001)
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not only becomes desensitized to other activators of the same
receptor, but the TRPV1 pathway heterologously desensitizes
responses to TRPA1 agonists and vice versa (Ruparel et al.,
2008). The mechanisms underlying homologous and heter-
ologous desensitization appear to be distinct with capsaicin-
induced desensitization being calcium-dependent but
heterologous desensitization being calcium-independent
(Ruparel et al., 2008). In addition, high doses of capsaicin
selectively destroy C- and Ad sensory nerves, thereby com-
pletely preventing nerve activation (Szallasi et al., 1995).
Clearly, this means that capsaicin-induced desensitization/
nerve destruction cannot be used to examine TRPV1-specific
down-stream effects on physiological/pathophysiological
processes. However, it can be used to show that capsaicin-
induced desensitization via TRPV1 has a functional effect
upon a cell or tissue.

TRPA1

Although TRPA1 was identified slightly later than its TRPV1
counterpart, its discovery took a comparable course. The
effects of the classic TRPA1 agonist, mustard oil (the active
component being allyl isothiocyanate), were identified much
earlier (e.g. Koltzenburg and McMahon, 1986) than the recep-
tor itself, with this compound commonly being used to
induce neurogenic inflammation, in a similar manner to cap-
saicin. TRPA1 was first cloned by Jaquemar et al. (1999),
although its expression on neurons was not reported until
2003 when Story et al. identified it as a receptor for noxious
cold temperature. However, the association between TRPA1
and mustard oil was later confirmed in 2005 when Jordt and
colleagues not only established TRPA1 as the mustard oil
receptor but also for tetrahydrocannabinol, leading the way
into a plethora of research into further possible TRPA1 ago-
nists (see Table 1). Indeed, concomitant with the ground-
breaking generation of TRPA1 knockout mice (Bautista et al.,
2006) came the finding that TRPA1 mediates the effects of
acrolein (2-propenal), present in tear gas, vehicle exhaust,
tobacco products and byproducts of chemotherapeutic
agents. Unlike the situation with TRPV1 knockout mice, an
examination of the phenotype of TRPA1 knockouts regarding
a role for this receptor in noxious temperature sensation has
proved controversial. Two independent knockout animals
have been generated (Bautista et al., 2006; Kwan et al., 2006).
The portion of the gene knocked out was the fifth and sixth
transmembrane domains (required for ion conduction) in
both cases. However, Bautista et al. (2006) reported normal
responses to cold temperatures both in vivo and in vitro in
TRPA1 knockout mice. On the other hand, knockouts in the
Kwan et al. (2006) study displayed a clear functional deficit to
cold stimulation. A discussion of the reasons underlying these
differences is beyond the scope of this review, but it remains to
be seen whether TRPA1 is truly a thermosensor channel.

TRPV1 and TRPA1 expression

Central expression
The location of TRPV1 on small-diameter, Ad and C fibre
sensory nerves is clearly intrinsically linked with its role in

pain and neurogenic inflammation. These nerves were the
site of discovery for both TRPV1 and TRPA1 and are still today
the focus of the bulk of research on these TRP channels. With
sensory nerves, the effects of TRPV1 (and to a certain extent
TRPA1) activation were known well before the receptor or its
expression was identified. Effects of capsaicin in other cell
types were also postulated as early as the 1970s (e.g. Jancsô
and Wollemann, 1977). However, since the cloning of the
receptors and the revolution of molecular biology, TRPV1 and
TRPA1 expression on other cell types has been confirmed as
an essential basis of the pharmacology of these effects. For
example, Mezey et al. (2000) used a TRPV1-specific antibody
to demonstrate the presence of TRPV1-expressing neurons
throughout the neuroaxis, including such areas as the
dopaminergic neurones of the substantia nigra, hippocampal
pyramidal neurones, hypothalamic neurones and neurones
in the locus coeruleus, in addition to various layers of the
cortex. RT-PCR confirmed the expression of TRPV1 mRNA in
the hippocampus, hypothalamus and cortex (Mezey et al.,
2000). The presence of TRPV1 mRNA has also been identified
in the cerebellum (Sasamura et al., 1998), showing a wide-
spread of expression of TRPV1 within the CNS. However,
more recently, the use of TRPV1 reporter mice has revolution-
ized the study of TRPV1 expression, and they would suggest
that the expression of this receptor is minimal within a few
discrete brain regions, most obviously in the vicinity of the
caudal hypothalamus (Cavanaugh et al., 2011).

The central localization of TRPA1 has been less specific
than for TRPV1, although TRPA1 mRNA has been shown to
be abundant in dog brain and cerebellum (Doihara et al.,
2009). However, associated protein expression was not con-
firmed in this study.

Peripheral expression
Within the periphery, recent evidence has located TRPV1 and
TRPA1 on a variety of non-neuronal tissues. In fact, the list of
possible sites of expression is becoming so great that to
discuss all in turn would be outside of the scope of this article.
Tables 2 and 3 list the peripheral non-neuronal cells on
which TRPV1 and TRPA1 have been located by RT-PCR for
RNA expression and/or immunohistochemical staining
Western blot for protein expression. From this extensive list,
it is clear to see that the advent of molecular biology tech-
niques in this field a decade ago has revolutionized our
potential understanding of the possible functions of these
TRP channels. However, as mentioned previously, evidence
that receptor mRNA or protein is present in a tissue should be
substantiated by evidence that the channel is functional.
Therefore, the following section will address that studies that
have provided evidence of TRPV1/TRPA1 functionality in
brain or peripheral sites.

Receptor functionality

Although TRPV1/TRPA1 channel expression has been shown
in a wide variety of tissues, evidence of functionality has not
yet been demonstrated for all of these. Therefore, this section
will solely concentrate on cell types where both a molecular
and functional presence has been confirmed. One of the first
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cell types in which functionality was first identified is epider-
mal keratinocytes. Inoue et al. (2002) demonstrated that both
capsaicin and acidification produced elevations in the intra-
cellular calcium concentration in cultured human epidermal
keratinocytes. Furthermore, these increases were inhibited by
the TRPV1 antagonist, capsazepine (Inoue et al., 2002). Simi-
larly, treatment of human skin fibroblasts with capsaicin
induced significant changes in the membrane current and the
intracellular calcium level that were antagonized by cap-
sazepine (Kim et al., 2006). More recently, TRPA1 agonists
have also been shown to activate calcium currents in both
keratinocytes (cold, allyl isothiocyanate and mustard oil;
Atoyan et al., 2009) and fibroblasts (cold, allyl isothiocyanate
and cinnemaldehyde; Hu et al., 2010). This trend is carried
forth with a multitude of other cells, as summarized in
Table 2.

It is therefore clear to this point that TRPV1 and TRPA1
are expressed and functional away from sensory nerves. Nev-
ertheless, this does not mean that the channels have similar
sensitivities. However, a comparison of the sensitivity of
channels expressed on sensory nerves and other tissues
regarding agonist stimulation is extremely difficult to extract
from the literature. The only study that to date has directly
compared neuronal and non-neuronal TRPV1 responses is
that by Kark et al. (2008) in vascular tissue. In the vasculature,
capsaicin has biphasic effects: at lower concentrations up to
10 nM, dilations are observed in response to neuronal TRPV1
activation. Conversely, at higher capsaicin concentrations
between 0.1 and 1 mM, vasoconstriction is observed in
response to non-neuronal TRPV1 activation.

In other cell types, capsaicin increased the intracellular
calcium concentration of rat vagal neurons within a capsaicin
concentration range of 0.1–10 mM (Marsh et al., 1987) and
increased the intracellular calcium concentration of human
and murine adipocytes within a capsaicin concentration
range of 0.01–1 mM (Zhang et al., 2007). The sensitivity of
neuronal and non-neuronal TRPV1 to capsaicin activation in
these studies therefore looks similar. However, it is impossible
to directly compare studies due to differences in experimental
conditions, including species differences (rat vs. mouse/
human, respectively, for the Marsh and Zhang studies). Thus,
the study by Kark et al. (2008) provides the only evidence to
date that there may be differences in sensitivity between
neuronal and non-neuronal forms of the receptor. The sensi-
tivity of TRPA1 on sensory nerves compared with TRPA1 on
other tissues is also very difficult to discuss, as no study has
directly compared the same agonist in each type of tissue
across a concentration range. Thus, any difference in sensi-
tivity remains to be seen.

Role in physiological or
pathophysiological function

From the previous sections, it is clear that the range of cell
types expressing functional TRPV1 and TRPA1 is very diverse.
As such, it is not surprising that the associated functions of
these receptors are also complex. Physiological or patho-
physiological effects of non-neuronal TRPV1 and TRPA1 have
been implicated in inflammation, infection and immunity,

the cardiovascular system and in conditions such as obesity.
Meanwhile, neuronal TRPV1 in the brain may have functions
in neurogenesis (Jin et al., 2004) and thermoregulation
(Jancsó-Gábor et al., 1970b), amongst others. The following
sections will discuss the effects of TRPV1 and TRPA1 in the
brain as well as non-neuronal TRPV1 and TRPA1 within
the context of different physiological/pathophysiological
systems. In doing so, the possible significance of these TRP
channels away from sensory nerves will be highlighted.

In the brain

As mentioned previously, TRPV1 is expressed throughout the
brain and, moreover, these TRPV1 channels appear to be
functional upon agonist stimulation. Indeed, downstream of
channel activation, Jancsô and Wollemann (1977) have
reported that capsaicin stimulates adenylate cyclase activity
in the rat cerebral cortex in vitro. Furthermore, direct injec-
tion of capsaicin into the preoptic area of the anterior hypo-
thalamus (Jancsó-Gábor et al., 1970b) or i.c.v. region (Dib,
1982) of the rat brain causes hypothermia, suggesting a role
for this channel in thermoregulation. Hypothermia is associ-
ated with a fall in rectal and hypothalamic temperature, an
increased cutaneous temperature (Dib, 1982) and tail skin
vasodilation (Jancsó-Gábor et al., 1970a). Vice versa, rats
desensitized by hypothalamic injections of high concentra-
tions of capsaicin lose their ability to thermoregulate against
overheating of their bodies and respond with an enhanced
hyperthermia to strong sensory stimuli such as repeated
pinching of the tail (Jancsó-Gábor et al., 1970a). Similarly,
systemic administration of TRPV1 antagonists such as
AMG517 (Gavva et al., 2007b), AMG0347 (Steiner et al.,
2007) and A-425619 (Gavva et al., 2007a) causes an increase
in body temperature within approximately 1 h of treatment.
However, antagonist-induced hyperthermia may not be
mediated by hypothalamic TRPV1 as peripherally-restricted
antagonists still have the capacity to cause an increase in
body temperature (Tamayo et al., 2008).

In inflammation, infection
and immunity

A physiological/pathophysiological role for non-neuronal
TRPV1/TRPA1 is perhaps nowhere more apparent than in the
case of inflammation, infection and immunity. However, it is
important to note that although the effects of these TRP
channels are non-neuronal, it is evident that they may well
impact indirectly upon pain and/or neurogenic inflamma-
tion. As mentioned previously, keratinocytes functionally
express both TRPV1 and TRPA1. These cells play an important
role in maintaining the integrity of the immune response in
skin as well as stimulating cutaneous inflammation via pros-
tanoid and cytokine release (Gröne et al., 2002). TRPV1 acti-
vation by capsaicin causes an increase in COX2 expression in
human keratinocytes with a concomitant increase in PGE2

levels in vitro (Southall et al., 2003). An increase in IL-8 is also
observed (Southall et al., 2003). Similarly, treatment of
human keratinocytes with the TRPA1 agonist, icilin, has been
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shown to increase the expression of pro-inflammatory ILs
(IL-1a and IL-1b; Atoyan et al., 2009) as well altering the
expression of genes involved in the control of keratinocyte
proliferation, differentiation and cell cycle regulation
(Atoyan et al., 2009). Stimulation of inflammatory mediator
release by TRPV1/TRPA1 agonists from keratinocytes could
well have a significant effect upon sensory nerves that have a
high density in skin, especially as PGE2 and IL-1 are known to
sensitize and/or activate sensory nerve endings (Schaible and
Schmidt, 1988; Binshtok et al., 2008). This is therefore a
prime example of how non-neuronal TRPV1/TRPA1 may
interact with sensory nerves to affect pain and neurogenic
inflammation.

As well as keratinocytes, peripheral blood mononuclear
cells (PBMCs) are also directly affected by TRPV1/TRPA1 acti-
vation. For example, PBMCs undergo apoptosis when stimu-
lated with capsaicin or resinaferatoxin, an effect that is
reversed by the TRPV1 antagonist, AM630 (Saunders et al.,
2007). In relation to TRPA1, the cinnamaldehyde derivative,
2′-hydroxycinnamaldehyde has been shown to inhibit nitric
oxide release and NF-kB activation in macrophages that have
been stimulated with LPS (the cell wall component of Gram-
negative bacteria; Lee et al., 2005). Similarly, cinnemaldehyde
inhibits IL-1b and TNFa release from human monocytes and
macrophages that have been stimulated by LPS (Chao et al.,
2008). A concomitant reduction of the release of reactive
oxygen species from the macrophages is also observed (Chao
et al., 2008). It would therefore appear that the effects of
TRPV1 and TRPA1 in terms of their direct effects on inflam-
matory cells appear to be in part anti-inflammatory.

There are various other cells involved in immunity that
respond to TRPV1 and TRPA1 activation including bone
marrow-derived dendritic cells, where capsaicin leads to den-
dritic cell maturation and an increase in antigen presentation
(Basu and Srivastava, 2005). Furthermore, with regard to
TRPA1, cinnamaldehyde has been shown to cause a dose-
dependent suppression of the lymphoproliferation in LPS-
treated mouse splenocytes (Koh et al., 1998). The same study
also showed that the exposure of thymocytes to cinnamalde-
hyde accelerated T-cell differentiation from CD4 and CD8
double-positive cells to CD4 or CD8 single-positive cells (Koh
et al., 1998).

It is therefore clear that TRPV1 and TRPA1 are expressed,
functional and are active within cells relevant to inflamma-
tion, infection and immunity. Most of the aforementioned
studies have been carried out in vitro and so the precise
influences of these effects in an in vivo setting are, as yet, far
from clear. However, what it is clear from other studies is that
TRPV1 at least plays a paradoxical role in inflammation in
vivo, for example, exacerbating inflammation in arthritis and
yet in experimentally induced sepsis, TRPV1 null mice dem-
onstrate elevated levels of pathological markers in compari-
son with wild-type mice (Alawi and Keeble, 2010). It cannot
be ruled out at this stage that this is due to differing effects of
neuronal and non-neuronal TRPV1 channels.

Role in the vasculature

TRPV1 and TRPA1 have been shown to control vascular
responses either by the well-established neurogenic response

that is mediated by sensory nerves (Geppetti et al., 2008) or
via a direct effect on vascular tissue (Kark et al., 2008; Earley
et al., 2009). However, the non-neuronal mechanisms
involved in mediating vasodilatation and oedema formation
following TRPV1 and TRPA1 activation in vivo are unclear.
Both endothelial cells and smooth muscle cells express a
variety of membrane ion channels to control Ca2+ influx and
membrane potential, including the expression of TRPV1 and
TRPA1 channels on endothelial cells (Yao and Garland, 2005;
Earley et al., 2009) and TRPV1 expression on vascular smooth
muscle cells (Kark et al., 2008; Cavanaugh et al., 2011), as
described in Table 1. Thus, there is clearly the potential for
non-neuronal TRPV1 and TRPA1 to contribute to vasculature
control.

TRPV1 on endothelial cells has been shown to regulate
the expression and secretion of endothelial cell-derived
CGRP, which affords protective effects on endothelial cells
(Luo et al., 2008). Furthermore, CGRP is a potent vasodilator
(Brain et al., 1985), and this CGRP may therefore impact
upon blood pressure. Indeed, TRPV1 activation on sensory
nerves also causes CGRP release, leading to a profound
decrease in vascular tone (Zygmunt et al., 1999). On the other
hand, TRPV1 expressed on vascular smooth muscle appears
to cause vasoconstriction. Kark et al. (2008) have shown that
capsaicin triggers transient vasoconstriction in isolated pres-
surised rat skeletal muscle arterioles, which is not abolished
by endothelial cell removal or denervation in vivo, indicating
the vasoconstriction was mediated by a direct effect of TRPV1
on vascular smooth muscle. Keeble and Brain (2006) have
also demonstrated vasoconstrictor responses to capsaicin,
albeit in the mouse synovial membrane. More recently,
Cavanaugh et al. (2011) have demonstrated vasoconstriction
in response to capsaicin in mouse ear arterioles. Interestingly,
as mentioned previously, it has also been suggested that cap-
saicin has biphasic effects on the vasculature: at lower con-
centrations, capsaicin (up to 10 nM) evokes vasodilation in
skin due to sensory nerve activation, whereas higher concen-
trations (0.1–1 mM) elicit substantial constrictions in skeletal
muscle arterioles due to non-neuronal TRPV1 stimulation
(Kark et al., 2008). It is unclear whether this difference is due
to receptor sensitivity (as discussed earlier with respect to
receptor functionality) or a difference in TRPV1 receptor
density in the two tissues. Furthermore, it is not entirely clear
whether, in order to achieve vasoconstriction, the vasodilator
effect of capsaicin first needs to be counteracted. However, it
is possible that highly localised TRPV1 activation by endog-
enous activators means that vasoconstriction or vasodilation
are triggered entirely separately, as opposed to treatment with
exogenous capsaicin when all TRPV1 is likely to be affected
simultaneously.

TRPV1 may also play a role in vascular responses during
chronic hypoxia where up-regulation of the TRPV1 gene and
protein is observed (Y.X. Wang et al., 2008). Chronic hypoxia
has been shown to enhance the ability of human pulmonary
artery smooth muscle cells to proliferate and to increase
resting levels of cytosolic calcium and capacitative calcium
entry with both effects being inhibited in a dose-dependent
manner by the TRPV1 antagonist, capsazepine (Y.X. Wang
et al., 2008). These results therefore suggest that TRPV1 on
smooth muscle may be a critical pathway or mediator in
chronic hypoxia-induced vascular changes.
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Research into TRPA1 in the vasculature is still in an early
phase although mustard oil has been shown to trigger vasodi-
latation in rat cerebral arteries via a mechanism that appears
to involve TRPA1 expressed on endothelial cells (Earley et al.,
2009). Mustard oil-induced vasodilation was not mediated by
nitric oxide or prostanoids, rather by calcium-activated potas-
sium channels on endothelial cells and inwardly rectifying
potassium channels on arterial myocytes. Furthermore,
the responses were inhibited by the TRPA1 antagonist,
HC-030031 (Earley et al., 2009).

It is therefore clear that non-neuronal TRPV1 and TRPA1
both have the potential to play a role in the physiology or
pathophysiology of the vasculature. TRPV1 in general has
been shown to play a role in hypertension (Li and Wang,
2003), cardiac ischaemia (Wang and Wang, 2005) and cardio-
vascular shock (Akabori et al., 2007). However, the relative
contribution of neuronal and non-neuronal TRPV1 to these
effects is, as yet, far from clear. In the case of TRPA1, the
physiological relevance of TRPA1 on sensory nerves in the
vasculature has only just been elucidated (Pozsgai et al.,
2010), and so we still have a long way to go with our under-
standing of this channel.

Obesity and thermogenesis

Obesity is one of the most significant health issues in western
society due to the morbidity associated with this condition
that is increasing in prevalence. Thus, a significant amount of
research has been generated to understand its underlying
causes and means of treating/preventing the condition. It is
known that obesity is induced by the hypertrophy of adipo-
cytes and the recruitment of new adipocytes from precursor
cells. These processes are dependent on the regulation of
adipocyte differentiation. The TRPV1 receptor is very inter-
esting in this respect as capsaicin has been shown to inhibit
adipocyte differentiation in vitro by activation of AMP-
activated protein kinase (Hwang et al., 2005). Furthermore,
Hsu and Yen (2007) have shown that treatment of preadipo-
cytes with capsaicin decreases the number of normal adipo-
cytes and increases the number of early apoptotic and late
apoptotic cells in a dose-dependent manner. Furthermore,
treatment of adipocytes with capsaicin was shown to decrease
the quantity of intracellular triglycerides and glycerol-3-
phosphate dehydrogenase activity (Hsu and Yen, 2007), both
biomarkers of adipogenesis.

As with the previous physiological/pathophysiological
conditions discussed, it is not known how significantly non-
neuronal TRPV1 receptors contribute to the overall effects of
TRPV1 activation. However, the overall effect of TRPV1
modulation in obesity is stark. For example, both animal
(Zhang et al., 2007) and human (Ohnuki et al., 2001) data
have indicated that the consumption of capsaicin- or non-
pungent capsiate-containing foods is correlated with a
reduced incidence of obesity. Similarly, oral administration of
capsaicin alone also suppresses body fat accumulation in
mice (Ohnuki et al., 2001), and dietary capsaicin can reduce
obesity-induced insulin resistance and hepatic stenosis in
mice fed a high fat diet (Kang et al., 2010). Moreover, TRPV1-
mediated changes in thermogenesis may have the potential
to impact upon obesity, possibly through changes in expres-

sion of thermogenic uncoupling proteins, as seen in response
to chronic treatment of rats with capsiates (Masuda et al.,
2003).

In recent years, a role for TRPV1 in thermoregulation has
also been identified which may, at least in part, be due to
changes in thermogenesis (for review, see Romanovsky et al.,
2009). For many years, capsaicin has been known to cause a
centrally mediated hypothermia in mice (Jancsó-Gábor et al.,
1970b). In contrast, its intragastric administration enhances
thermogenesis and heat diffusion (Masamoto et al., 2009).
Similarly, the jejunal administration of non-pungent capsai-
cin analogues was shown to increase energy expenditure via
direct activation of TRPV1 located on intestinal extrinsic
nerves (Kawabata et al., 2009). Interestingly, some TRPV1
antagonists cause hyperthermia, associated with increased
thermogenesis (Gavva et al., 2007a) through a peripheral
mechanism (Tamayo et al., 2008), whilst TRPV1 gene knock
down does not affect body temperature in mice (Tóth et al.,
2011). and TRPV1 knockout mice exhibit a normal basal body
temperature (Steiner et al., 2007). Although this clearly shows
a homeostatic role for TRPV1 in thermoregulation, it is
beyond the scope of this review to discuss the mechanism
underlying TRPV1 antagonist-induced hyperthermia as there
is, to date, no direct evidence that it is mediated by non-
neuronal TRPV1. It will be extremely interesting in the future
to determine whether the mechanism underlying role of
TRPV1 in thermoregulation is intrinsically linked with the
aforementioned role for TRPV1 in obesity.

Conclusion

To conclude, it is now clear that the roles of TRPV1 and
TRPA1 discussed in this review extend far beyond sensory
nerves. Not only are TRPV1 and TRPA1 receptors expressed in
other neuronal and non-neuronal tissues, but they also
exhibit functionality and they are of potential physiological/
pathophysiological relevance. It is clear that we still have a
great deal to learn about these receptors away from sensory
nerves, especially in relation to their precise function in vivo.
We also need to find out a great deal more about their influ-
ence upon pain and neurogenic inflammation as it is entirely
possible that they are intrinsically related. Progress in this
field would be greatly enhanced by selective knockout/
knockdown of TRPV1/TRPA1 on sensory nerves and/or other
specific cell types. Furthermore, it would be interesting to
determine whether TRPV1 antagonists, or the currently avail-
able TRPA1 antagonists, have any relative specificity for these
TRP channels on different cell types. Finally, it remains to be
seen whether different modes of activation of TRPV1 and
TRPA1 have potentially differing importance depending on
the site of TRP channel expression. We eagerly await these
answers.
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